
Blue Brain Project

Dr. Armando
Romani / Prof.

Felix Schürmann

EPFL

Computational
Neuroscience:
biophysics -
Lecture 13

Simulation & Scientific Computing

2

Lecture Overview

3

• Scope

• Approaches

• Applications

Lecture Overview

4

• Scope

• Approaches

• Applications

Of Seemingly Simple and Complex Systems

5

• Theory is the starting point
• Many of those models can only be solved using numerical integration
• Some models are (much) more complex/larger than others

Beginnings of Scientific Computing

• First testimony of the synergy of
– programmable electronic computer
– mathematical analysis
– opportunity and need to solve large and complex problems in applications

(Bulletin of the AMS, Nov. 1947)

6

IN SILICO NEUROSCIENCE

Brief History of Computational Science

7

AEROSPACE INDUSTRIES
NUCLEAR STOCKPILE STEWARDSHIP
COMPUTATIONAL BIOLOGY

1950s 1960s 1970s 1980s 1990s 2000s 2010s

NUMERIAL WEATHER PREDICTION
ELECTRICAL ENGINEERING
DRUG DESIGN & SURGICAL PLANNING

FIRST CLIMATE MODELS
MECHANICAL ENGINEERING
ASTROPHYSICS

(AERO)SPACE & COMPUTATIONAL FLUID DYNAMICS
MATERIAL SCIENCE

COMPUTATIONAL CHEMISTRY
CIVIL ENGINEERING

ADVANCED CLIMATE MODELING
EARTH SYSTEM MODELING
PHARMACOLOGY

COMPUTATIONAL MEDICINE

2020s

AI/ML FOR COMPUTATIONAL
SCIENCE

ENIAC

Computing – the most successful scaling story in human history

8

OLCF – “Frontier”

“Fron
tier

”: ~
10

18 FLO
PS

~18,000 vacuum tubes
~27tons
~167m^2
150kW
Per second

5000 additions or
357 multiplications or
38 divisions

“ENIAC”: ~
10

3 FLO
PS

75 years
1015x increase

Main drivers
Transistor 1948

Integrated Circuits 1958
CMOS 1963

Moore’s Law

– Describes the observation that component
counts double every year in integrated circuits

– Revised in 1975 to double every 2 years

Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965.

Gordon E. Moore, 1965

9

Moore’s Law 1971-2018

In 2022:
Apple M1 Ultra with over 114 billion transistors

10

Economics!

• At any time a manufacturing technology allows
– Integration of few to many components in an IC
– for simple circuits the cost per component is nearly

~1/#components
– At some point the decreased yield makes it

economically uninteresting

• Yield:
– Yield is the percentage of chips on a finished wafer

that pass all tests and function properly.
– Production of integrated circuits leads to non-

functional variations and faults (and surely: more
surface more faults!)

11

Top500 Supercomputers over time

12From: top500.org

1. Chip:
16 cores

2. Module:

4. Node Card (“Node Board”):
32 Compute Cards (2x2x2x2x2),
Optical Modules, BQL Link Chips, Torus

5a. Midplane:
16 Node Cards (4x4x4x4x2)

6. Rack: 2 Midplanes (4x4x4x8x2)

7. System:
e.g. 8 racks (8x8x8x8x2) = 1.7 PF/s
e.g. 96 racks (16x12x16x16x2) = 20 PF/s

3. Compute Card (“Node”):
One BQC Module (1x1x1x1x1),
16 GB DDR3 Memory

5b. I/O drawer (1,2 or 4 per rack):
* 8 I/O cards @ 16 GB,
* 8 PCIe gen2 x8 slots (IB, 10GbE)

•Sustained single node perf: 10x BG/P, 20x BG/L
• MF/Watt: 6x BG/P, 10x BG/L (~2GF/Watt)

Source: IBM

Buil-Up of a Massively Parallel Supercomputer

13

The Brain - Relevant Scales

weak scaling

strong scaling

Space: ~9 orders of magnitude
Time: ~18 orders of magnitude

14

15

Simplified Model: Single Compartment and ion channel formalism

E
m

Cm Rm
V
m

ENa

gNa

E
k

gk

I inj

Cellular Model: Cable and ion channel formalism

Subcellular Model: Reaction-Diffusion formalism

Abstract Model: Point neuron, e.g. Leaky Integrate and Fire

Many Ways to Modeling a Neuron

How to understand neural circuits across levels?

16

Markram et al., 2006

Data interdependencies of the microcircuit

Example: Microcircuit plasticity, a synaptic correlate of learning

Long-
term

plasticity

Long-term
plasticity

Challenges

17

• Computing at the “frontier of what is computable” by definition is a changing
problem, requiring adaptation to new technology and its limitations

• Navigating this potential requires knowledge from the fields of
computational neuroscience, applied mathematics and computer science
and engineering

• Leveraging the computational power available in modern supercomputers
requires appropriate computational methods, tools and practices

Summary 1

• Scientific computing describes the opportunity and need to solve large and
complex problems using programmable electronic computers and
mathematical analysis

• The performance increase in electronic computers since the beginnings in the
1940s is possibly the largest continual improvement in any man-made
technology

• Biophysical and biochemical computational modeling is a useful approach to
study the multi-scale nature of the brain and its phenomena requiring
appropriate numerical methods and large-scale computers

18

Lecture Overview

19

• Scope

• Approaches

• Resources/Applications

Reaction-Diffusion

Molecular
Dynamics

Mean Field/Mass/
Maps/Baysian

Neuron-based

Many Ways to Modeling (pieces of) a Brain

20

Many Neuro Simulator Resources

NEST, BRIAN, CSIM, MVASpike, C2, …

NEURON/CoreNeuron, MOOSE, GENESIS, Arbor, …

STEPS, MCELL, VCELL, NEURORD, CDS, …

LAMMPS, NAMD, AMBER, GROMACS, ESPRESSO, …
Gaussian, CPMD, CP2K, …

Topographica, MIIND, …

Reaction-Diffusion

Molecular
Dynamics

Mean Field/Mass/
Maps/Baysian

Neuron-based

21

A good starting point

22

Comparison

23

The NEURON Simulation Environment

25

• Efficient, domain-specific simulator for multi-compartment, conductance-based simulations of
neurons and networks

• De-facto standard for cellular-level models: more than 2300 scientific publications using
NEURON

Core authors: Michael Hines, Robert McDougal, Ted Carnevale @ Yale University
Open source, http://www.neuron.yale.edu

http://www.neuron.yale.edu/

NEURON Close-Up

26

NEURON

Interpreter Layer Python, Hoc

Domain Specific Language NMODL

GUI Interviews

Computational Layer Integrators, parallel algorithms

Productivity Libraries Python and Hoc libraries

Runtime interactions

Compile & link

Graphical User Interface

27

• When installed locally, NEURON
comes with a powerful graphical
user interface

• This provides access to model
building tools (Import3D,
CellBuilder, ChannelBuilder,
NetworkBuilder), parameters,
visualization of neurons and
simulation results without the
need to program

• The UI is customizable for your
own purposes, allowing to build
tailor-made “applications”

$ python
>>> from neuron import h, gui

Productivity Libraries

28

• NEURON provides specialized functionality for complex workflows, e.g.

– Morphology import (Import3D) allowing data input and model output, analysis
and repair

– Pseudo random number generators (such as Random123)

– Reaction-Diffusion semantics (rxd) allowing to declare domains, molecules,
diffusion, reactions, 1D, 3D

– SaveState/BBSaveState allowing to store the state of a neuron model for e.g.
simulating different trajectories

– ParallelContext allowing simple bulletin board style parallelization

– Etc.

Interpreter Layer

29

• NEURON provides an interpreter
layer, ie. a way to script NEURON
without the need of compiling the code

• This is the most powerful way of
interacting with NEURON and its
functionality

• Traditionally, NEURON used the hoc
(higher order calculator) language as
its primary scripting language

• Since 2009, NEURON supports
python, which is now the standard
(however, you will still find a lot of hoc
code around)

Domain Specific Language - NMODL

30

Kumbhar et al.; An optimizing multi-platform source-to-source compiler framework
for the NEURON MODeling Language, ICCS, 2020

NMODL

C++

CUDA

Open
MP/
ACC

CUDA

Domain Specific Language (DSL)

Lexer
Parser

AST Generator

Abstract Syntax Tree

Platform Compilers

Optimization Passes
Code Generator

• NEURON provides a Domain Specific
Language (DSL) called NMODL that allows
to describe models in terms of equations
and kinetic schemes

• Behind the scenes, NEURON translates the
NMODL constructs into C which then get
compiled and linked to the executable

• This provides the most efficient way to
implement models as it avoids the
interpreter, used for channels/synapses etc.

• DSLs have recently become a major tool in
computational science to bridge domain
science with high performance execution

Hines and Carnevale; Expanding NEURON with NMODL, 2000

Simulation Loop for Biophysically Detailed Neurons/Networks

31

Forward Euler

• Most basic explicit method for solving
ODEs with initial value

• (simplest Runge-Kutta method)

• First order method à global error ~ dt

• Unstable for stiff equations,
e.g. something as simple as y’=-2.3y
(unstable for step size =1; stable for
step size 0.7)

• NOT used in NEURON

32

Backward Euler
• Simplest implicit method for solving ODEs

with initial value
• Similar to forward Euler
• Inaccurate but stable
• net error proportional to dt (useful for large

time steps!)
• Standard integration method for example in

NEURON

Backward Euler

33

Crank-Nicolson

• Implicit method

• Combination of forward Euler & backward
Euler (half step each)

• Error proportional to dt2 (useful for small
time steps)

• Well suited for HH-style ionic currents

34

Adaptive Time Step Methods

• Define a maximum allowable absolute
error rather than a time step

• Integrator adjusts time step dt so that
the estimated local error is always
less then the absolute error

• Can be 10x faster than fixed time
even though more complex

• E.g. NEURON uses CVODE (Cohen
& Hindmarsh 1994)

Hines and Carnevale, 2001 35

Simulation Loop for Biophysically Detailed Neurons/Networks

36

Multi-Compartment Modeling

€

Cmi

dVi

dt
= gmi

(Eleaki
−Vi) + gki (Eki

−Vi) +
k
∑

V j −Vi

(ra j
+ rai) /2j

∑

segment/compartment

section

For each compartment i:

37

Multi-compartment Modeling - Naïve Numbering

Requires general Gaussian elimination of complexity O(n3)

38

Hines Algorithm

Can be solved with a slightly modified Tridiagonal solver! O(n)

Int J Biomed Comput. 1984 Jan-Feb;15(1):69-76.

39

Simulation Loop for Biophysically Detailed Neurons/Networks

40

Minimal Axonal Delay

taxonaldelay

No spike evoked at time t can arrive at any
postsynaptic cell sooner than t+min{taxonaldelay}

à Each cell can be integrated independently for
min{taxonaldelay}

Morrison et al., Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing, Neural
Computation 17, 1776–1801 (2005)

Migliore et al., Parallel network simulations with NEURON, J Comput Neurosci. 2006 Oct;21(2):119-29.

41

Parallelizing a Network

Morrison et al., Advancing the Boundaries of
High-Connectivity Network Simulation with
Distributed Computing, Neural Computation 17,
1776–1801 (2005)

42

Parallel Execution of Neural Networks

t

rank #

0

n-1

setup phase

integrate(t mindelay)

spike exchange

43

Summary 2

44

• Simulation engines for simulation of neurons and networks are essential tools
for computational neuroscience research

• There exist many neurosimulators and most likely you do not need to (and
should not!) write your own

• Depending on your level of detail in your model, NEURON may be the tool of
choice (especially for multi-compartment models)
– It offers an easy-to-use UI as well as scriptable and efficient executables

– It offers all the numerical methods needed (numerical integration, linear algebra, random
numbers etc)

– It runs on your desktop as well as on massively parallel supercomputers

Lecture Overview

45

• Scope

• Approaches

• Applications

The NEURON Simulation Environment (neuron.yale.edu)

46

• Efficient, domain-specific simulator for multi-compartment, conductance-
based simulations of neurons and networks

• De-facto standard for cellular-level models: more than 2300 scientific
publications using NEURON

• Python support and extensible

• Extreme performance, runs on desktop and largest supercomputers

The NEURON Book, Carnevale, N. T., and Hines M. L. , (2006)

https://neuron.yale.edu/neuron/publications/neuron-book
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=65
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=20

Research Using Simulation

47

>2300 publications using NEURON

Research on Simulation

48

Modernizing the NEURON simulator for
sustainability, portability, and performance

Awile et al. 2022

Research Software sticks around: almost 40 years and counting

49

Linden et al. 2014

50Linden et al, Front. Neuroinform., 16 January 2014 | https://doi.org/10.3389/fninf.2013.00041

https://doi.org/10.3389/fninf.2013.00041

Extracellular Potentials

51

• The study aims to computationally derive the extracellular signature of
neuronal activity in brain tissue models

• These extra-cellular potentials are generated by the summed distance-
dependent contributions from transmembrane currents

• There are two main electrical signals recorded in experimental literature
– High-frequency signals (>= 500 Hz) referred to as Multi-unit activity mostly reflecting spiking

activity tens of micrometers from the electrode contact

– Low-frequency signals referred to as local field potential mostly reflecting synaptic integration
in populations of neurons within radii of hundreds of micrometers from the electrode contact

• Follow-up paper (Hagen et al., 2018) extends this also to other signals such
as ECoG, EEG, MEG

Calculating Extracellular Potentials

52

Position-dependent
extracellular spike waveforms
during an action potential in a
rat L5b pyramidal-cell model
(Hay et al., 2011). Black dots
correspond to the positions of
the (virtual) electrode contact
points. Spike traces at each
position are normalized and
color coded according to the
magnitude of the negative
peak.

From Neuron models to Extracellular Potential

53

1.Calculation of transmembrane currents of each neuron, using
multicompartmental model neurons derived from detailed
morphological reconstructions of neurons within NEURON
simulation environment (Carnevale and Hines, 2006; Carnevale,
2007).

2.Calculation of the extracellular potential from the trans-
membrane currents using a biophysical forward-modeling
formalism derived within so called volume-conductor theory
(Hämäläinen et al., 1993; Nunez and Srinivasan, 2006).

From Transmembrane Currents to Electrical Potential

54

Currents in a single neurons:

Forward Model for Extracellular potential1):

Assuming:
• Quasi-static approximation (E and B fields effectively decouple)
• linear, isotropic, homogeneous and ohmic extracellular medium

1) In practice, the LFPy does use the line source approximation for neuronal processess and sphere for soma

Results

55

FIGURE 3 | Extracellular
potential generated by a single
synaptic input produced by
executing example1.py.
Extracellular potentials (middle
and bottom left panels)
generated at positions marked
by green and blue dot,
respectively, by a synaptic
input current (upper left panel)
injected in the apical dendrite
at the position marked by red
dot. The pyramidal cell
corresponds to a layer-5
pyramidal cell from cat visual
cortex with passive
membranes but without
adjustment of the membrane
area to compensate for spines
(Mainen and Sejnowski, 1996).
The contour plot shows
equipotential lines for the
maximum magnitude of the
extracellular potential in the xz-
plane.

Results

56

Take Home Messages from Linden et al. 2014

57

• Example of how the simulation results of biophysically detailed neuron
models done in NEURON can be used to derive additional biophysical
signals through a forward model

• Specifically, LFPy sums up and geometrically weighs the trans-membrane
currents of neuron models as computed by NEURON and calculates the
electrical potential

• Under the hood, LFPy invokes NEURON to calculate the transmembrane
currents

Dura-Bernal et al. 2019

58

Premise

59

• NetPyNE = Networks using Python and NEURON

• Simplify the work with large-scale neural networks, in particular
– (1) flexible, rule-based, high-level standardized specifications covering scales from molecule to cell

to network;

– (2) efficient parallel simulation both on stand-alone computers and in high-performance computing
(HPC) clusters;

– (3) automated data analysis and visualization (e.g. connectivity, neural activity, information
theoretic analysis);

– (4) standardized input/output formats, importing of existing NEURON cell models, and conversion
to/from NeuroML (Gleeson et al., 2010; Cannon et al., 2014);

– (5) automated parameter tuning across multiples scales (molecular to network) using grid search
and evolutionary algorithms.

– All tool features are available programmatically or via an integrated graphical user interface (GUI).

NetPyNE - Schema

60

Related work

61

• neuroConstruct (Gleeson et al., 2007)

• PyNN (Davison, 2008)

• Topographica (Bednar, 2009)

• ARACHNE (Aleksin et al., 2017)

• BioNet (Gratiy et al., 2018)

• …

Python Network Data-Structure

62

Less is More

63

LFP Recordings

64

Graphical User Interface

65

Take Home Messages from Dura-Bernal et al. 2019

66

• NetPyNE is a high-level Python interface to the NEURON simulator that
facilitates the definition, parallel simulation, optimization and analysis of
data-driven brain circuit models.

• It provides multi-scale specifications using a declarative language; from
molecular level chemo-physiology to network scale

• Integrated parameter optimization

• It can lead to more compact model specifications increasing clarity and
reducing likeliness of bugs

Summary 3

67

• For biophysically detailed models of neurons and networks, the NEURON
simulation environment is the defacto standard

• Thousands of scientific studies have used NEURON, including the largest
and most detailed brain tissue models to-date

• Furthermore, NEURON is used as a building block for multi-scale, multi-
physics simulations

• Lastly, there is a rich eco-system of software facilitating the use of NEURON

• For other scales and scopes (e.g. stochastic reaction-diffusion, spiking neural
networks), other simulators are to be considered as they have optimizations
relevant at those scales

Lecture Summary

68

• Scientific computing describes the opportunity and need to solve large and
complex problems using programmable electronic computers and
mathematical analysis

• Methods and algorithms for the simulation of neurons and networks (of
diverse levels of detail) are the ingredients for scientific computing in
neuroscience

• Several simulation packages have emerged over the last 40 years that are
the de facto standard for simulation (NEURON for biophysically detailed
simulations, NEST for large scale spiking neural networks, BRIAN for smaller
spiking neural networks)

• These packages are under constant development to keep up with the
development of computers and to advance the type of scientific studies that
can be done

