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Of Seemingly Simple and Complex Systems
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• Theory is the starting point
• Many of those models can only be solved using numerical integration
• Some models are (much) more complex/larger than others



Beginnings of Scientific Computing

• First testimony of the synergy of
– programmable electronic computer 
– mathematical analysis
– opportunity and need to solve large and complex problems in applications

(Bulletin of the AMS, Nov. 1947)
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IN SILICO NEUROSCIENCE

Brief History of Computational Science

7

AEROSPACE INDUSTRIES
NUCLEAR STOCKPILE STEWARDSHIP
COMPUTATIONAL BIOLOGY

1950s 1960s 1970s 1980s 1990s 2000s 2010s

NUMERIAL WEATHER PREDICTION
ELECTRICAL ENGINEERING
DRUG DESIGN & SURGICAL PLANNING

FIRST CLIMATE MODELS
MECHANICAL ENGINEERING
ASTROPHYSICS

(AERO)SPACE & COMPUTATIONAL FLUID DYNAMICS
MATERIAL SCIENCE

COMPUTATIONAL CHEMISTRY
CIVIL ENGINEERING

ADVANCED CLIMATE MODELING
EARTH SYSTEM MODELING
PHARMACOLOGY

COMPUTATIONAL MEDICINE

2020s

AI/ML FOR COMPUTATIONAL 
SCIENCE



ENIAC

Computing – the most successful scaling story in human history
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OLCF – “Frontier”

“Fron
tier

”: ~
10

18 FLO
PS

~18,000 vacuum tubes
~27tons
~167m^2
150kW
Per second

5000 additions or
357 multiplications or 
38 divisions

“ENIAC”: ~
10

3 FLO
PS

75 years
1015x increase

Main drivers
Transistor 1948

Integrated Circuits 1958
CMOS 1963



Moore’s Law

– Describes the observation that component 
counts double every year in integrated circuits

– Revised in 1975 to double every 2 years

Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965. 

Gordon E. Moore, 1965
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Moore’s Law 1971-2018

In 2022:
Apple M1 Ultra with over 114 billion transistors 
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Economics!

• At any time a manufacturing technology allows 
– Integration of few to many components in an IC
– for simple circuits the cost per component is nearly 

~1/#components
– At some point the decreased yield makes it 

economically uninteresting

• Yield: 
– Yield is the percentage of chips on a finished wafer 

that pass all tests and function properly.
– Production of integrated circuits leads to non-

functional variations and faults (and surely: more 
surface more faults!)
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Top500 Supercomputers over time

12From: top500.org



1. Chip:
16 cores

2. Module:

4. Node Card (“Node Board”):
32 Compute Cards (2x2x2x2x2), 
Optical Modules, BQL Link Chips, Torus

5a. Midplane: 
16 Node Cards (4x4x4x4x2)

6. Rack: 2 Midplanes (4x4x4x8x2)

7. System: 
e.g. 8 racks (8x8x8x8x2) = 1.7 PF/s
e.g. 96 racks (16x12x16x16x2) = 20 PF/s

3. Compute Card (“Node”):
One BQC Module (1x1x1x1x1), 
16 GB DDR3 Memory

5b. I/O drawer (1,2 or 4 per rack):
* 8 I/O cards @ 16 GB,
* 8 PCIe gen2 x8 slots (IB, 10GbE)

•Sustained single node perf:  10x BG/P, 20x BG/L
• MF/Watt:  6x BG/P, 10x BG/L (~2GF/Watt) 

Source: IBM

Buil-Up of a Massively Parallel Supercomputer
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The Brain - Relevant Scales

weak scaling

strong scaling

Space: ~9 orders of magnitude
Time: ~18 orders of magnitude
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Simplified Model: Single Compartment and ion channel formalism
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Cellular Model: Cable and ion channel formalism

Subcellular Model: Reaction-Diffusion formalism

Abstract Model: Point neuron, e.g. Leaky Integrate and Fire

Many Ways to Modeling a Neuron



How to understand neural circuits across levels?
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Markram et al., 2006

Data interdependencies of the microcircuit

Example: Microcircuit plasticity, a synaptic correlate of learning 

Long-
term 

plasticity

Long-term 
plasticity



Challenges
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• Computing at the “frontier of what is computable” by definition is a changing 
problem, requiring adaptation to new technology and its limitations

• Navigating this potential requires knowledge from the fields of 
computational neuroscience, applied mathematics and computer science 
and engineering

• Leveraging the computational power available in modern supercomputers 
requires appropriate computational methods, tools and practices



Summary 1

• Scientific computing describes the opportunity and need to solve large and 
complex problems using programmable electronic computers and 
mathematical analysis 

• The performance increase in electronic computers since the beginnings in the 
1940s is possibly the largest continual improvement in any man-made 
technology

• Biophysical and biochemical computational modeling is a useful approach to 
study the multi-scale nature of the brain and its phenomena requiring 
appropriate numerical methods and large-scale computers
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Lecture Overview
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Reaction-Diffusion

Molecular 
Dynamics

Mean Field/Mass/
Maps/Baysian

Neuron-based

Many Ways to Modeling (pieces of) a Brain
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Many Neuro Simulator Resources

NEST, BRIAN, CSIM, MVASpike, C2, … 

NEURON/CoreNeuron, MOOSE, GENESIS, Arbor, …

STEPS, MCELL, VCELL, NEURORD, CDS, …

LAMMPS, NAMD, AMBER, GROMACS, ESPRESSO, …
Gaussian, CPMD, CP2K, …

Topographica, MIIND, …

Reaction-Diffusion

Molecular 
Dynamics

Mean Field/Mass/
Maps/Baysian

Neuron-based
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A good starting point
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Comparison
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The NEURON Simulation Environment
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• Efficient, domain-specific simulator for multi-compartment, conductance-based simulations of 
neurons and networks

• De-facto standard for cellular-level models: more than 2300 scientific publications using 
NEURON

Core authors: Michael Hines, Robert McDougal, Ted Carnevale @ Yale University
Open source, http://www.neuron.yale.edu

http://www.neuron.yale.edu/


NEURON Close-Up
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NEURON

Interpreter Layer Python, Hoc

Domain Specific Language NMODL

GUI Interviews

Computational Layer Integrators, parallel algorithms

Productivity Libraries Python and Hoc libraries

Runtime interactions

Compile & link



Graphical User Interface
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• When installed locally, NEURON 
comes with a powerful graphical 
user interface

• This provides access to model 
building tools (Import3D, 
CellBuilder, ChannelBuilder, 
NetworkBuilder), parameters, 
visualization of neurons and 
simulation results without the 
need to program

• The UI is customizable for your 
own purposes, allowing to build 
tailor-made “applications”

$ python
>>> from neuron import h, gui



Productivity Libraries
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• NEURON provides specialized functionality for complex workflows, e.g.

– Morphology import (Import3D) allowing data input and model output, analysis 
and repair

– Pseudo random number generators (such as Random123)

– Reaction-Diffusion semantics (rxd) allowing to declare domains, molecules, 
diffusion, reactions, 1D, 3D

– SaveState/BBSaveState allowing to store the state of a neuron model for e.g. 
simulating different trajectories

– ParallelContext allowing simple bulletin board style parallelization

– Etc.



Interpreter Layer

29

• NEURON provides an interpreter 
layer, ie. a way to script NEURON 
without the need of compiling the code

• This is the most powerful way of 
interacting with NEURON and its 
functionality

• Traditionally, NEURON used the hoc 
(higher order calculator) language as 
its primary scripting language

• Since 2009, NEURON supports 
python, which is now the standard 
(however, you will still find a lot of hoc 
code around)



Domain Specific Language - NMODL
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Kumbhar et al.; An optimizing multi-platform source-to-source compiler framework 
for the NEURON MODeling Language, ICCS, 2020

NMODL

C++

CUDA

Open
MP/
ACC

CUDA

Domain Specific Language (DSL)

Lexer
Parser

AST Generator

Abstract Syntax Tree

Platform Compilers

Optimization Passes
Code Generator

• NEURON provides a Domain Specific 
Language (DSL) called NMODL that allows 
to describe models in terms of equations 
and kinetic schemes 

• Behind the scenes, NEURON translates the 
NMODL constructs into C which then get 
compiled and linked to the executable

• This provides the most efficient way to 
implement models as it avoids the 
interpreter, used for channels/synapses etc.

• DSLs have recently become a major tool in 
computational science to bridge domain 
science with high performance execution

Hines and Carnevale; Expanding NEURON with NMODL, 2000



Simulation Loop for Biophysically Detailed Neurons/Networks
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Forward Euler

• Most basic explicit method for solving 
ODEs with initial value

• (simplest Runge-Kutta method)

• First order method à global error ~ dt

• Unstable for stiff equations, 
e.g. something as simple as y’=-2.3y 
(unstable for step size =1; stable for 
step size 0.7)

• NOT used in NEURON
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Backward Euler
• Simplest implicit method for solving ODEs 

with initial value
• Similar to forward Euler
• Inaccurate but stable
• net error proportional to dt (useful for large 

time steps!)
• Standard integration method for example in 

NEURON

Backward Euler
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Crank-Nicolson

• Implicit method

• Combination of forward Euler & backward 
Euler (half step each)

• Error proportional to dt2 (useful for small 
time steps)

• Well suited for HH-style ionic currents

34



Adaptive Time Step Methods

• Define a maximum allowable absolute 
error rather than a time step

• Integrator adjusts time step dt so that 
the estimated local error is always 
less then the absolute error

• Can be 10x faster than fixed time 
even though more complex

• E.g. NEURON uses CVODE (Cohen 
& Hindmarsh 1994)

Hines and Carnevale, 2001 35



Simulation Loop for Biophysically Detailed Neurons/Networks
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Multi-Compartment Modeling

€ 

Cmi

dVi

dt
= gmi

(Eleaki
−Vi) + gki (Eki

−Vi) +
k
∑

V j −Vi

(ra j
+ rai ) /2j

∑

segment/compartment

section

For each compartment i:
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Multi-compartment Modeling - Naïve Numbering

Requires general Gaussian elimination of complexity O(n3)

38



Hines Algorithm

Can be solved with a slightly modified Tridiagonal solver! O(n)

Int J Biomed Comput. 1984 Jan-Feb;15(1):69-76.
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Simulation Loop for Biophysically Detailed Neurons/Networks
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Minimal Axonal Delay

taxonaldelay

No spike evoked at time t can arrive at any 
postsynaptic cell sooner than t+min{taxonaldelay}

à Each cell can be integrated independently for 
min{taxonaldelay}

Morrison et al., Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing, Neural
Computation 17, 1776–1801 (2005) 

Migliore et al., Parallel network simulations with NEURON, J Comput Neurosci. 2006 Oct;21(2):119-29.
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Parallelizing a Network

Morrison et al., Advancing the Boundaries of 
High-Connectivity Network Simulation with 
Distributed Computing, Neural Computation 17, 
1776–1801 (2005) 

42



Parallel Execution of Neural Networks

t

rank #

0

n-1

setup phase

integrate(t mindelay)

spike exchange
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Summary 2
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• Simulation engines for simulation of neurons and networks are essential tools 
for computational neuroscience research

• There exist many neurosimulators and most likely you do not need to (and 
should not!) write your own

• Depending on your level of detail in your model, NEURON may be the tool of 
choice (especially for multi-compartment models)
– It offers an easy-to-use UI as well as scriptable and efficient executables

– It offers all the numerical methods needed (numerical integration, linear algebra, random 
numbers etc)

– It runs on your desktop as well as on massively parallel supercomputers



Lecture Overview

45

• Scope

• Approaches

• Applications



The NEURON Simulation Environment (neuron.yale.edu)
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• Efficient, domain-specific simulator for multi-compartment, conductance-
based simulations of neurons and networks

• De-facto standard for cellular-level models: more than 2300 scientific 
publications using NEURON

• Python support and extensible

• Extreme performance, runs on desktop and largest supercomputers

The NEURON Book, Carnevale, N. T., and Hines M. L. , (2006)

https://neuron.yale.edu/neuron/publications/neuron-book
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=65
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=20


Research Using Simulation
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>2300 publications using NEURON



Research on Simulation
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Modernizing the NEURON simulator for
sustainability, portability, and performance 

Awile et al. 2022



Research Software sticks around: almost 40 years and counting
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Linden et al. 2014

50Linden et al, Front. Neuroinform., 16 January 2014 | https://doi.org/10.3389/fninf.2013.00041

https://doi.org/10.3389/fninf.2013.00041


Extracellular Potentials
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• The study aims to computationally derive the extracellular signature of 
neuronal activity in brain tissue models

• These extra-cellular potentials are generated by the summed distance-
dependent contributions from transmembrane currents

• There are two main electrical signals recorded in experimental literature
– High-frequency signals (>= 500 Hz) referred to as Multi-unit activity mostly reflecting spiking 

activity tens of micrometers from the electrode contact

– Low-frequency signals referred to as local field potential mostly reflecting synaptic integration 
in populations of neurons within radii of hundreds of micrometers from the electrode contact

• Follow-up paper (Hagen et al., 2018) extends this also to other signals such 
as ECoG, EEG, MEG 



Calculating Extracellular Potentials
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Position-dependent 
extracellular spike waveforms 
during an action potential in a 
rat L5b pyramidal-cell model 
(Hay et al., 2011). Black dots 
correspond to the positions of 
the (virtual) electrode contact 
points. Spike traces at each 
position are normalized and 
color coded according to the 
magnitude of the negative 
peak. 



From Neuron models to Extracellular Potential 
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1.Calculation of transmembrane currents of each neuron, using 
multicompartmental model neurons derived from detailed 
morphological reconstructions of neurons within NEURON 
simulation environment (Carnevale and Hines, 2006; Carnevale, 
2007). 

2.Calculation of the extracellular potential from the trans-
membrane currents using a biophysical forward-modeling
formalism derived within so called volume-conductor theory 
(Hämäläinen et al., 1993; Nunez and Srinivasan, 2006). 



From Transmembrane Currents to Electrical Potential
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Currents in a single neurons:

Forward Model for Extracellular potential1):

Assuming:
• Quasi-static approximation (E and B fields effectively decouple)
• linear, isotropic, homogeneous and ohmic extracellular medium

1) In practice, the LFPy does use the line source approximation for neuronal processess and sphere for soma



Results
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FIGURE 3 | Extracellular 
potential generated by a single 
synaptic input produced by 
executing example1.py. 
Extracellular potentials (middle 
and bottom left panels) 
generated at positions marked 
by green and blue dot, 
respectively, by a synaptic 
input current (upper left panel) 
injected in the apical dendrite 
at the position marked by red 
dot. The pyramidal cell 
corresponds to a layer-5 
pyramidal cell from cat visual 
cortex with passive 
membranes but without 
adjustment of the membrane 
area to compensate for spines 
(Mainen and Sejnowski, 1996). 
The contour plot shows 
equipotential lines for the 
maximum magnitude of the 
extracellular potential in the xz-
plane. 



Results
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Take Home Messages from Linden et al. 2014
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• Example of how the simulation results of biophysically detailed neuron 
models done in NEURON can be used to derive additional biophysical 
signals through a forward model

• Specifically, LFPy sums up and geometrically weighs the trans-membrane 
currents of neuron models as computed by NEURON and calculates the 
electrical potential

• Under the hood, LFPy invokes NEURON to calculate the transmembrane 
currents



Dura-Bernal et al. 2019
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Premise
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• NetPyNE = Networks using Python and NEURON

• Simplify the work with large-scale neural networks, in particular
– (1) flexible, rule-based, high-level standardized specifications covering scales from molecule to cell 

to network; 

– (2) efficient parallel simulation both on stand-alone computers and in high-performance computing 
(HPC) clusters; 

– (3) automated data analysis and visualization (e.g. connectivity, neural activity, information 
theoretic analysis); 

– (4) standardized input/output formats, importing of existing NEURON cell models, and conversion 
to/from NeuroML (Gleeson et al., 2010; Cannon et al., 2014); 

– (5) automated parameter tuning across multiples scales (molecular to network) using grid search 
and evolutionary algorithms. 

– All tool features are available programmatically or via an integrated graphical user interface (GUI).



NetPyNE - Schema
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Related work

61

• neuroConstruct (Gleeson et al., 2007)

• PyNN (Davison, 2008)

• Topographica (Bednar, 2009)

• ARACHNE (Aleksin et al., 2017)

• BioNet (Gratiy et al., 2018)

• …



Python Network Data-Structure
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Less is More
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LFP Recordings
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Graphical User Interface
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Take Home Messages from Dura-Bernal et al. 2019
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• NetPyNE is a high-level Python interface to the NEURON simulator that 
facilitates the definition, parallel simulation, optimization and analysis of 
data-driven brain circuit models.

• It provides multi-scale specifications using a declarative language; from 
molecular level chemo-physiology to network scale

• Integrated parameter optimization

• It can lead to more compact model specifications increasing clarity and 
reducing likeliness of bugs



Summary 3
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• For biophysically detailed models of neurons and networks, the NEURON 
simulation environment is the defacto standard

• Thousands of scientific studies have used NEURON, including the largest 
and most detailed brain tissue models to-date

• Furthermore, NEURON is used as a building block for multi-scale, multi-
physics simulations

• Lastly, there is a rich eco-system of software facilitating the use of NEURON

• For other scales and scopes (e.g. stochastic reaction-diffusion, spiking neural 
networks), other simulators are to be considered as they have optimizations 
relevant at those scales



Lecture Summary
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• Scientific computing describes the opportunity and need to solve large and 
complex problems using programmable electronic computers and 
mathematical analysis 

• Methods and algorithms for the simulation of neurons and networks (of 
diverse levels of detail) are the ingredients for scientific computing in 
neuroscience

• Several simulation packages have emerged over the last 40 years that are 
the de facto standard for simulation (NEURON for biophysically detailed 
simulations, NEST for large scale spiking neural networks, BRIAN for smaller 
spiking neural networks)

• These packages are under constant development to keep up with the 
development of computers and to advance the type of scientific studies that 
can be done


