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0f Seemingly Simple and Complex Systems

NOAA GFDL CM2.1 MODEL

13 =11 -9 ;7 -5 -36-28 -2 -1.2-04 04 12 2 28 36 5 7 9 11 16 20°F
SURFACE AIR TEMPERATURE ANOMALIES
(DIFFERENCE FROM MODELED 1971-2000 AVERAGE)

« Theory is the starting point
« Many of those models can only be solved using numerical integration
« Some models are (much) more complex/larger than others
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NUMERICAL INVERTING OF MATRICES OF HIGH ORDER

JOHN VON NEUMANN AND H. H. GOLDSTINE

(Bulletin of the AMS, Nov. 1947)

* First testimony of the synergy of

— programmable electronic computer
— mathematical analysis
— opportunity and need to solve large and complex problems in applications
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Brief History of Computational Science

FIRST CLIMATE MODELS
MECHANICAL ENGINEERING
ASTROPHYSICS

1950s

MATERIAL SCIENCE

AEROSPACE INDUSTRIES
NUCLEAR STOCKPILE STEWARDSHIP

COMPUTATIONAL BIOLOGY
IN SILICO NEUROSCIENCE
gﬁ/l:llLPéJJérh:ggsllthEMISTRY Al/ML FOR COMPUTATIONAL
SCIENCE
1970s
NUMERIAL WEATHER PREDICTION
ELECTRICAL ENGINEERING COMPUTATIONAL MEDICINE
DRUG DESIGN & SURGICAL PLANNING
(AERO)SPACE & COMPUTATIONAL FLUID DYNAMICS ADVANCED CLIMATE MODELING

EARTH SYSTEM MODELING
PHARMACOLOGY



GComputing - the most successful scaling story in human history

75 years
10'%x increase

Main drivers

Transistor 1948
Integrated Circuits 1958
CMOS 1963
) Space 680 m? (7,300 sq ft)
5000 adqmlonsl or Speed  1.102 exaFLOPS (Rmax) /
357 multiplications or 1.685 exaFLOPS (Rpeak)!']
38 divisions

Cost US$600M (estimated cost)

Purpose Scientific research

E P F I Website https://www.olcf.ornl.gov/frontier/ 2!




— Describes the observation that component
counts double every year in integrated circuits

— Revised in 1975 to double every 2 years

LOG2 OF THE
NUMBER OF COMPONENTS

PER INTEGRATED FUNCTION

O—NUWAINO~NDWYO
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E P l- Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp.
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Cold- cslhodb unt and store: page 80
Dsmetr esl radiation: page 93
35th ar sary—the experts look ahead: page 99

Gordon E. Moore, 1965

114-117, April 19, 1965.



Moore’s Law 1971-2018
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.
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« At any time a manufacturing technology allows
— Integration of few to many components in an IC

— for simple circuits the cost per component is nearly
~1/components

— At some point the decreased yield makes it
economically uninteresting

* Yield:
— Yield is the percentage of chips on a finished wafer
that pass all tests and function properly.

— Production of integrated circuits leads to non-
functional variations and faults (and surely: more
surface more faults!)

=Pi-L
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Top500 Supercomputers over time
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Performance
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Buil-Up of a Massively Paraliel Supercomputer

4. Node Card (“Node Board”):

3. Compute Card (“Node”): 32 Compute Cards (2x2x2x2x2),
One BQC Module (1x1x1x1x1), Optical Modules, BQL Link Chips, Torus
16 GB DDR3 Memory

2. Module;_

5b. 1/0 drawer (1,2 or 4 per rack): 7. System:
*81/0 cards @ 16 GB, e.g. 8 racks (8x8x8x8x2) = 1.7 PF/s
* 8 PCle gen2 x8 slots (1B, 10GbE) e.g. 96 racks (16x12x16x16x2) = 20 PF/s

5a. Midplane:
16 Node Cards (4x4x4x4x2)

+Sustained single node perf: 10x BG/P, 20x BG/L
* MF/Watt: 6x BG/P, 10x BG/L (~2GF/Watt)

6. Rack: 2 Midplanes (4x4x4x8x2) Source: IBM 13



The Brain - Relevant Scales

Spatial Scales

Meters

(109

Centimeters
(109

Millimeters
(109)

Micrometers
(109

Nanometers
(109

Time scales

weak scaling (10)

T 1

Microseconds
(109

Nanoseconds
(109

strong scaling

Picoseconds

(1079
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Many Ways lﬂ Mﬂllﬂllll!l a Neuron

Abstract Model: Point neuron, e.g. Leaky Integrate and Fire

,m(t) s de( ) I 0, I <1y
Rm N CT“ dt f( ) [tref - R C locr - ‘th )]_ I > I"h

; Simplified Model: Single Compartment and ion channel formalism
! CndVp, Em — Vi
.!! Na k + Ichannels
j = _% + ||nigg fg it -
%i: / J_— ! EN_T = = am(V)(1 —m) = fu(Vin)m
dh )

I(t) -

) T = a(Vm)1—h) = By(Vih

I, channel

|_‘ | N Cellular Model: Cable and ion channel formalism
C040896A-P2 Cdem B Em _ Vm + I
dt — R channels

+2(Vmi+1 - sz) 2(Vmi—1 - sz)
Rai-i—l + Ra Rai—l + Ra

= mnhgchannel(Vm - Echannel)

<

Subcellular odel: Reaction-Diffusion form?IIism
& px;t) = —p(x;t) 3 au(x)+

n=1

M
Z p(X—=su; t)au(X—sy)

p=1

15
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Example: Microcircuit plasticity, a synaptic correlate of learning

Spatial scales

Time scales

Data interdependencies of the microcircuit

Years
Meters (100
10
1 Days
Cene expression profiles ' ( Electrophysiological profiles ' ( Morphological profiles iy
Centimeters
109
@orpho-elec(rop”ysiologicalty@ Hours
109
w
Millimeters lon channel compositions )——( lon channel distributions
109 -3 <
Total number of neurons Frequencies of occurrence (h:;\’)m“
2 \
- lz Locations S !
Seconds
4] (109
o Presynaptic neuron: Postsyqaptic neurons
<
Structural connectivity To ynapse number Synapses Milliseconds
- r connection (109)
Postsynaptic
(7] Total number Total number innervation pattern:
J of boutons of targets
— ; - " Microseconds
tic biophysics Synaptic dynami (109
Terminals per Presynaptic
onnection innervation Connectio ies of release
Synapse conducta rDepression time constants
Neurotransm#ter receptors -Facilitation time constants
Functional connectivity loni rmeahili.ties -term plasticities
eversal potentials
" Functional connectiXjty Long-term
Neoaeaises Postsynaptic neuron; I t t
Presynaptic neurons plastcity

k Markram et al., 2006




« Computing at the “frontier of what is computable” by definition is a changing
problem, requiring adaptation to new technology and its limitations

* Navigating this potential requires knowledge from the fields of
computational neuroscience, applied mathematics and computer science
and engineering

* Leveraging the computational power available in modern supercomputers
requires appropriate computational methods, tools and practices

=Pi-L
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summary 1

« Scientific computing describes the opportunity and need to solve large and
complex problems using programmable electronic computers and
mathematical analysis

« The performance increase in electronic computers since the beginnings in the
1940s is possibly the largest continual improvement in any man-made
technology

« Biophysical and biochemical computational modeling is a useful approach to
study the multi-scale nature of the brain and its phenomena requiring
appropriate numerical methods and large-scale computers

=Pi-L
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Lecture Overview

« Scope
« Approaches

« Resources/Applications

=Pi-L
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Spatial Scales

Neuron-based

et

Moletutar
Dynamics

oo’

=Pr-L
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Spatial Scales

Topographica, MIIND, ...

NEST, BRIAN, CSIM, MVASpike, C2, ...

Neuron-based

NEURON/CoreNeuron, MOOSE, GENESIS, Arbor, ...

STEPS, MCELL, VCELL, NEURORD, CDs, ...

Moldeer LAMMPS, NAMD. AMBER, GROMACS, ESPRESSO. ...
Rynamics Gaussian. CPMD, CP2K. ...

oo’

21



J Comput Neurosci (2007) 23:349-398
DOI 10.1007/s10827-007-0038-6

TOPICAL REVIEW ON TECHNIQUES

Simulation of networks of spiking neurons:

A review of tools and strategies

Romain Brette - Michelle Rudolph - Ted Carnevale -
Michael Hines - David Beeman - James M. Bower -
Markus Diesmann - Abigail Morrison -

Philip H. Goodman - Frederick C. Harris, Jr. -

Milind Zirpe - Thomas Natschliiger - Dejan Pecevski -
Bard Ermentrout - Mikael Djurfeldt -

Anders Lansner - Olivier Rochel - Thierry Vieville -
Eilif Muller - Andrew P. Davison -

Sami El Boustani - Alain Destexhe

Received: 29 November 2006 / Revised: 2 April 2007 / Accepted: 12 April 2007 / Published online: 12 July 2007

© Springer Science + Business Media, LLC 2007

Abstract We review different aspects of the simulation
of spiking neural networks. We start by reviewing the
different types of simulation strategies and algorithms
that are currently implemented. We next review the
precision of those simulation strategies, in particular in
cases where plasticity depends on the exact timing of

the spikes. We overview different simulators and sim-
ulation environments presently available (restricted to
those freely available, open source and documented).
For each simulation tool, its advantages and pitfalls are
reviewed, with an aim to allow the reader to identify
which simulator is appropriate for a given task. Finally,
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Table 1 Comparison of features of the different simulators

=Pr-L

Question NEURON GENESIS NEST NCS CSIM XPP SPLIT Myvaspike
HH B.L B.L YES B.L B.I. YES B.L POSS
LIF B.L POSS YES B.L B.I. YES POSS#* B.L.
Izhikevich IF YES B.L. YES NO B.I. YES POSS## POSS#*#
Cable egs B.IL B.L NO NO NO YES B.I. NO

ST plasticity YES B.I. YES B.L B.I. YES B.L YES
LT Plasticity YES YES YES B.L B.I. YES NO#** YES
Event-based B.I. NO YES NO NO YES NO YES
Exact B.L - YES - e NO — YES
Clock-based B.L B.L YES B.L YES YES YES POSS**
Interpolated B.I. NO YES NO NO YES B.I. POSS
G synapses B.L B.L YES B.L B.I. YES B.I. POSS**
Parallel B.L YES B.L B.L NO#* NO B.L NO#**
Graphics B.L B.L. NO(*) NO(*) NO(*) YES NO NO
Simple analysis B.L B.L YES NO(#*) NO(*) YES NO NO
Complx analysis B.L YES NO(*) NO(*) NO(*) YES NO NO
Development YES YES YES YES YES YES YES YES
How many p. 3 2-3 4 2-3 2 1 2 1
Support YES YES YES YES YES YES YES YES
Type e.p.c e e e e e e e

User forum YES YES YES NO NO YES YES NO
Publ list YES YES YES YES YES NO NO NO
Codes YES YES YES YES YES YES NO NO
Online manual YES YES YES YES YES YES YES YES
Book YES YES NO NO NO YES NO NO
XML import NO#*# POSS NO#*#* NO#* NO YES NO NO#*#
XML export B.L NO#* NO*#* NO#* NO NO NO NO#*#*
Web site YES YES YES YES YES YES YES YES
LINUX YES YES YES YES YES YES YES YES
Windows YES YES YES YES YES YES NO NO
Mac-Os YES YES YES NO NO YES NO NO
Interface B.L. B.L POSS B.I YES POSS POSS POSS
Save option B.I YES NO*#* B.L NO NO NO NO

23



The NEURON Simulation Environment

N E U RO N NEWS DOWNLOAD DOCUMENTATION COURSES PUBLICATIONS RESOURCES ABOUT US Search n

FORUM MODELDB PROGRAMMER'S REFERENCE

Welcome to the community of
NEURON users and developers!

Core authors: Michael Hines, Robert McDougal, Ted Carnevale @ Yale University
Open source, http://www.neuron.yale.edu

» Efficient, domain-specific simulator for multi-compartment, conductance-based simulations of
neurons and networks

» De-facto standard for cellular-level models: more than 2300 scientific publications using
NEURON

=Pr-L
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http://www.neuron.yale.edu/

“ E“ n n “ c I 088'" n ' Runtime interactions

H Compile & link

NEURON
Interviews
Python and Hoc libraries
Python, Hoc
Domain Specific Language NMODL
Computational Layer Integrators, parallel algorithms

=Pr-L )



When installed locally, NEURON
comes with a powerful graphical
user interface

This provides access to model
building tools (Import3D,
CellBuilder, ChannelBuilder,
NetworkBuilder), parameters,
visualization of neurons and
simulation results without the
need to program

The Ul is customizable for your
own purposes, allowing to build
tailor-made “applications”

=Pr-L

X/ NEURON Main Menu

L
(Fte_gutd_toots_Graph Veotor Window tep ] ' |,

[\ ModelView(0]... soma. v( S)

X\ Graph[0] x-0.5:56.5 y-92:52 N\ LogAvsX[0]

Include dstate/dt contribution

Iﬂ_ﬁ

Vin
v Vout
Measure (red) soma(0.5)

|

log(Attenuation)

as
28
21
1.4
07

0
190 330 570 780 950

$ python
>>> from neuron import h, gui



Productivity Libraries

« NEURON provides specialized functionality for complex workflows, e.g.

Morphology import (Import3D) allowing data input and model output, analysis
and repair

Pseudo random number generators (such as Random123)

Reaction-Diffusion semantics (rxd) allowing to declare domains, molecules,
diffusion, reactions, 1D, 3D

SaveState/BBSaveState allowing to store the state of a neuron model for e.g.

simulating different trajectories
ParallelContext allowing simple bulletin board style parallelization

Etc.

=Pi-L
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I n l e r n r e l e r la v e r {rontiers in ORIGINAL RESEARCH ARTICLE
NEUROINFORMATICS doi 10.5355etro 110012009
_ _ NEURON and Python
* N E U RON prOVIdeS an Interpreter Michael L. Hines', Andrew P Davison?* and Eilif Muller®
layer, ie. a way to script NEURON e e et
W i t h o ut t h e n e e d Of Co m p i I i n g t h e Cod e 3 Laboratory for Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Edited by: The NEURON simulation program now allows Python to be used, alone or in combination with

Rolf Ktter, Radboud University, NEURON'’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit
Nijmegen, The Netherlands

° This iS the most powerful Way Of R of making available a very extensive suite of analysis tools written for engineering and science.

Felix Schirmann, Ecole Polytechnique |t @S catalyzes NEURON software development by offering users a modern programming

H H H h N E U RO N d H Fédérale de Lausanne, Switzerland tool that is recognized for its flexibility and power to create and maintain complex programs. At
Inte raCtI ng Wlt an ItS Volker Steuber, University of the same time, nothing is lost because all existing models written in Hoc, including graphical
. . Hertfordshire, UK user interface tools, continue to work without change and are also available within the Python

Amd Roth, University College London, § . sige .

fu nCtlonaI |ty UK context. An example of the benefits of Python availability is the use of the xm1 module in
*Correspondence: implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model

Andrew Davison, UNIC, Bat. 32/33, specifications.
CNRS, 1 Avenue de la Terrasse, 91198

» Traditionally, NEURON used the hoc Kopwors Pyton skuiaton s ’

e-mail: andrew.davison@unic.cnrs-gif.fr

(higher order calculator) language as o oden specitication
its primary scripting language A I b cnense s apicat, basiter, s

apical = Section()
basilar = Section()

-« Since 2009, NEURON supports won = seckion0

apical.connect (soma, 1, 0) # connect apical(0), soma(1)
basilar.connect(soma, 0, 0) connect basilar(0), soma(0)

python, which is now the standard a5 conmecy laonss, by 0) " commaet mEanilo) s FaRalD)
(however, you will still find a lot of hoc vona ¢

soma.L = 30 L = 30

*

23
1

apical.diam : i -
E P e I " |
[] 29

#
#
Code around) soma.nseg = 1 # nseg = 1

soma.diam = 30 # diam = 30

# }

# apical {
apical.L = 600 # L = 600
apical.nseg # nseg = 23

#

#



: A passive leak current

- - -
NEURON {
- SUFFIX leak

NONSPECIFIC_CURRENT i
RANGE i, e, g
}

«  NEURON provides a Domain Specific R 001 (siemens/cn2) < 0, 1e9 >
p p = -65 (millivolt)
Language (DSL) called NMODL that allows }
. . . ASSIGNED {
to describe models in terms of equations v (minives

}

BREAKPOINT { i = g*(v - e) }

and kinetic schemes

° Behind the scenes, NEURON translates the Hines and Carnevale; Expanding NEURON with NMODL, 2000
NMODL constructs into C which then get
compiled and linked to the executable

i ll;aerx;rr Optimization Passes ; - +¢%» igg
« This provides the most efficient way to | AST Ganeator colesemrmer | /KE T
implement models as it avoids the ¥ 4_'&! »| TV o SRS Y o N aeae
! | QQ 3 QQ | R
interpreter, used for channels/synapses etc. R| b 15
' Abstract Syntax Tree i
. . Domain Specific Language (DSL) : ‘ . a»
« DSLs have recently become a major tool in ,J we
computational science to bridge domain Piatior Compilrs

science with high performance execution

Kumbhar et al.; An optimizing multi-platform source-to-source compiler framework
for the NEURON MODeling Language, ICCS, 2020

=Pi-L .



Simulation Loop for Biophysically Detailed Neurons/Networks

l

| event driven
v spike delivery

| stimuli |

syn current
ion ch current

foreach At foreach &nin

_-1'31 UT-I(‘jate vo:tage foreach neuron until i until Tstop
i Ines solver

I ¢ syn update
e @ ion ch update
e B

threshold
detection

neuron 1

neuron 2

neuron 3

spike exchange i

neuron 4




* Most basic explicit method for solving
ODEs with initial value

« (simplest Runge-Kutta method)
* First order method - global error ~ dt

« Unstable for stiff equations,
e.g. something as simple as y'=-2.3y
(unstable for step size =1; stable for
step size 0.7)

 NOT used in NEURON

=Pi-L

1.00

0.80

0.60

0.40

0.20

0.00

y = 1(y)

y(t+dt) - y(t) _ f(y(t))

dt
y(t +dt) = y(t) + dt "f(y(t))

32



« Simplest implicit method for solving ODEs 1.00
with initial value 050

« Similar to forward Euler

- Inaccurate but stable "

« net error proportional to dt (useful for large 40
time steps!) 0.20

« Standard integration method for example in 0.00
NEURON

Backward Euler

y =1(y)

y(t+dt) - y(t)
dt

y(t + dt) = y(t) + dt *f(y(t + dt))

= f(y(t+dt))

Backward Euler

33



. . 1.00
* Implicit method
080 | y' =1(y)
« Combination of forward Euler & backward | \ YO YO ey
Euler (half step each) 0.60 | y(t + dt) = y(t) + dt *f(y(t+dt/2))
« Error proportional to dt? (useful for small 040 |
time steps)
0.20
* Well suited for HH-style ionic currents
0.00
0 1 2 - 3

0 0.2 0.4 0.6 0.8 1

=Pi-L |



Adaptive Time Step Methods

=P

Define a maximum allowable absolute
error rather than a time step

Integrator adjusts time step dt so that
the estimated local error is always
less then the absolute error

Can be 10x faster than fixed time
even though more complex

E.g. NEURON uses CVODE (Cohen
& Hindmarsh 1994)

L

A

B

20

mV

0
0

200 400 600 800 1000
ms

g 8 & 8

log 4ot
1

CVODE
0 [/\
q 400 600 1000

dt=0.01ms

Hines and Carnevale, 2001 35



Simulation Loop for Biophysically Detailed Neurons/Networks

neuron 1
neuron 2
neuron 3

neuron 4

l

event driven

v spike delivery

l stimuli

syn current
\ ion ch current

e

update voltage
Hines solver

syn update
ion ch update

threshold
detection

neuron

foreach At
until 8min

spike exchange

foreach
until Tst

e?nin

op

36



segment/compartment

/-/Lﬂ

ﬁ@g—e )

\ . )

L HHH K

S———e [ H H )
section

%

For each compartment /: C, — = Em, (Eleaki -Vi+ ggki (Eki ~%) +2 (Vaj J+ T, )l/2

a
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Requires general Gaussian elimination of complexity O(nj)

" A A O 0 0 0 0 0 0 7
Branch 3 Az Az Ass 0 0 0 0 0 0
0 Az, Asz Asy O 0 A7z O 0
0 0 43 Agq Ays O 0 0 0
A= 0 0 0 Asg Ass Asg O 0 0
0 0 0 0 Agss A O 0 0
0 0 A;3 O 0 0 A7 Arg O
0 0 0 0 0 0 Agy Ags Agg
Branch 4 | 0 0 0 0 0 0 0 Ag,s Ag,g ]

38
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EFFICIENT COMPUTATION OF BRANCHED NERVE EQUATIONS

MICHAEL HINES
Department of Physiology, Duke University Medical Center, Durham, N.C. 27710 (U.S.A.)

(Received 19 Mareh- 1983 10t J Biomed Comput. 1984 Jan-Feb:15(1):69-76.

Branch 2 [ A A O 0 0 0 0 0 0 7
Ay Ags A3 O 0 0 0O 0 0
Soma (branch 4) 8 A8’2 A8’3 A(i4 A(z i} 8 A8’7 8 8
A=| 0 0 0 Asy Ass Asg 0 0 0
0 0 0 0 Ass Ass Asz O 0
0 0 A3 0 0 76 A7 Azg 0
0 0 0 0 0 0 Ag7; Asgs Asg
| 0 0 0 0 0 0 0 Agg Agg |

L Can be solved with a slightly modified Tridiagonal solver! O(n)
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Simulation Loop for Biophysically Detailed Neurons/Networks

l

| event driven
v spike delivery

| stimuli |

_‘.;.' - _ é ? syn current
T S

vV ion ch current

foreach At foreach &nin

_-1'31 UT-I(‘jate vo:tage foreach neuron until i until Tstop
i Ines solver

|
I ¢ syn update
_I = @ ion ch update
e S o
threshold
detection
neuron 1 1T T | | -
neuron 2 [T T [T T
newron 3 [T T T I T~ spike exchange |
neuron 4 [ [ TT | 0 |
time
i —




Minimal Axonal Delay

No spike evoked at time t can arrive at any
L postsynaptic cell sooner than t+min{t,naidetay)

/A/L‘ —> Each cell can be integrated independently for

min{taxonaldelay}

taxonaldelay

Morrison et al., Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing, Neural
Computation 17, 1776-1801 (2005)

e Migliore et al., Parallel network simulations with NEURON, J Comput Neurosci. 2006 Oct;21(2):119-29.
|
cPi-L
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Neurons Synapses

[S]e]=][~][o]a]s]w]n]~]

11

Morrison et al., Advancing the Boundaries of
High-Connectivity Network Simulation with
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summary 2

=P

Simulation engines for simulation of neurons and networks are essential tools
for computational neuroscience research

There exist many neurosimulators and most likely you do not need to (and
should not!) write your own

Depending on your level of detail in your model, NEURON may be the tool of
choice (especially for multi-compartment models)
— It offers an easy-to-use Ul as well as scriptable and efficient executables

— It offers all the numerical methods needed (numerical integration, linear algebra, random
numbers etc)

— It runs on your desktop as well as on massively parallel supercomputers

L
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Lecture Overview

« Scope
« Approaches

« Applications

=Pi-L
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The NEURON Simulation Environment (neuron.yale.edu)

N E U RO N NEWS DOWNLOAD DOCUMENTATION COURSES PUBLICATIONS RESOURCES ABOUT US Search n

FORUM MODELDB PROGRAMMER'S REFERENCE

Welcome to the community of
NEURON users and developers!

« Efficient, domain-specific simulator for multi-compartment, conductance-
based simulations of neurons and networks

« De-facto standard for cellular-level models: more than 2300 scientific
publications using NEURON

« Python support and extensible

Extreme performance, runs on desktop and largest supercomputers

E P F L The NEURON Book, Carnevale, N. T., and Hines M. L. , (2006)
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https://neuron.yale.edu/neuron/publications/neuron-book
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=65
https://neuron.yale.edu/neuron/publications/biblio?f%5Bauthor%5D=20

>2300 publications using NEURON

Please cite this article in press as: Billeh et al., Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual
Cortex, Neuron (2020), https://doi.org/10.1016/j.neuron.2020.01.040 |

Neuron
CellPress

Systematic Integration of Structural
and Functional Data into Multi-scale
Models of Mouse Primary Visual Cortex
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and Anton Arkhipov'-3*
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Reconstruction and Simulation
of Neocortical Microcircuitry
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Modernizing the NEURON simulator for

- -
Research on Simulation sustainability, portability, and performance

Awile et al. 2022

Performance Models
DSL Source2source
Asynchronous

7x memory savings/3x faster

@ CoreNEURON open sourced
Scaled to full JUQUEEN/MIRA

Save State

ooooo 000X
[a[a[a]u]s} oo
[s]m) [*] 00
o

Bk

Hybrid MPI/pthreads

Scalable Spike Exchange (DCMF_Multicast) = Hines et al., 2011
Spike Playback (PatternStim)

NEURON as a library, Python Interface - King et al., 2009, Hines et al., 2009

Neuron splitting in compute-bound parallel network simulations.
Parallel Linear Algebra - distributed & multicore - Hines et al., 2008a & Hines et al., 2008b

Reproducible Parallel Random Numbers

Parallelization using MPI - ParallelContext, Interproc Network Connection Objects, GIDs - Migliore et al., 2006
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o
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=Pr-L .



Research Software sticks around: almost 40 years and counting

\ . o : . TECHNOLOGY AND CODE
:' frontiers ’ Frontiers in Neuroinformatics published: 27 June 2022
doi: 10.3389/fninf.2022.884046

®

Check for
updates

Modernizing the NEURON Simulator
for Sustainability, Portability, and
Performance

Omar Awile ', Pramod Kumbhar'*, Nicolas Cornu’, Salvador Dura-Bernal?3,

James Gonzalo King', Olli Lupton’, loannis Magkanaris', Robert A. McDougal *°¢,

Adam J. H. Newton?*, Fernando Pereira’, Alexandru Savulescu’, Nicholas T. Carnevale ™,
William W. Lytton®, Michael L. Hines ™ and Felix Schirmann ™*

" Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2 Department Physiology and
Pharmacology, SUNY Downstate, Brooklyn, NY, United States,  Center for Biomedical Imaging and Neuromodulation,
Nathan Kiline Institute for Psychiatric Research, Orangeburg, NY, United States, * Department of Biostatistics, Yale School of
Public Health, New Haven, CT, United States, ° Program in Computational Biology and Bioinformatics, Yale University,

New Haven, CT, United States, ¢ Yale Center for Medical Informatics, Yale University, New Haven, CT, United States,

" Department of Neuroscience, Yale University, New Haven, CT, United States



Linden et al. 2014

romtiers in ORIGINAL RESEARCH ARTICLE
NEUROINFORMATICS dor 103389t 2013.00041

LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons

Henrik Lindén'?', Espen Hagen'', Szymon teski'?, Eivind S. Norheim', Klas H. Pettersen’* and
Gaute T. Einevoll™*

' Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway

2 Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology (KTH), Stockholm, Sweden
3 Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland

* CIGENE, Norwegian University of Life Sciences, As, Norway
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E i Linden et al, Front. Neuroinform., 16 January 2014 | https://doi.org/10.3389/fninf.2013.00041
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https://doi.org/10.3389/fninf.2013.00041

« The study aims to computationally derive the extracellular signature of
neuronal activity in brain tissue models

« These extra-cellular potentials are generated by the summed distance-
dependent contributions from transmembrane currents

« There are two main electrical signals recorded in experimental literature

— High-frequency signals (>= 500 Hz) referred to as Multi-unit activity mostly reflecting spiking
activity tens of micrometers from the electrode contact

— Low-frequency signals referred to as local field potential mostly reflecting synaptic integration
in populations of neurons within radii of hundreds of micrometers from the electrode contact

« Follow-up paper (Hagen et al., 2018) extends this also to other signals such
as ECoG, EEG, MEG

=Pi-L
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extracellular spike waveforms
during an action potential in a
rat Lbb pyramidal-cell model
(Hay et al., 2011). Black dots
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the (virtual) electrode contact
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1.Calculation of transmembrane currents of each neuron, using
multicompartmental model neurons derived from detailed
morphological reconstructions of neurons within NEURON
simulation environment (Carnevale and Hines, 2006; Carnevale,
2007).

2.Calculation of the extracellular potential from the trans-
membrane currents using a biophysical forward-modeling
formalism derived within so called volume-conductor theory
(Hamalainen et al., 1993; Nunez and Srinivasan, 2006).
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From Transmembrane Gurrents to Electrical Potential

Currents in a single neurons:

dv, ;
&n, n+l(Vn+l - Vn) —8&n—1, n(Vn - Vn—l) = Cnd_tn + ZIL
]

extracellular

intracellular

Forward Model for Extracellular potential®):

1 Iy(t)
4716 |r — 1y

O(r, 1) =

Assuming:
« Quasi-static approximation (E and B fields effectively decouple)
 linear, isotropic, homogeneous and ohmic extracellular medium

E P :: L 1) In practice, the LFPy does use the line source approximation for neuronal processess and sphere for soma
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FIGURE 3 | Extracellular
potential generated by a single
synaptic input produced by
executing examplel.py.
Extracellular potentials (middle
and bottom left panels)
generated at positions marked
by green and blue dot,
respectively, by a synaptic
input current (upper left panel)
injected in the apical dendrite
at the position marked by red
dot. The pyramidal cell
corresponds to a layer-5
pyramidal cell from cat visual
cortex with passive
membranes but without
adjustment of the membrane
area to compensate for spines
(Mainen and Sejnowski, 1996).
The contour plot shows
equipotential lines for the
maximum magnitude of the
extracellular potential in the xz
plane.
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Electrode

Presynaptic spike times
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FIGURE 4 | Simulation of extracellular potentials from a population
of neurons using MPIL. A population of pyramidal cells (Middle panel)
receiving input spikes from a presynaptic pool of spike trains (Left

panel) is simulated by distributing cells on different MPI processes and
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Single neuron extracellular potentials
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by collecting their individual contributions in the root MPI process.
Summation of the individual contribution then gives the total population
potential (Right panel). Results shown come from executing
example3.py.
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Take Home Messages from Linden et al. 2014
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Example of how the simulation results of biophysically detailed neuron
models done in NEURON can be used to derive additional biophysical
signals through a forward model

Specifically, LFPy sums up and geometrically weighs the trans-membrane
currents of neuron models as computed by NEURON and calculates the
electrical potential

Under the hood, LFPy invokes NEURON to calculate the transmembrane
currents
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Dura-Bernal et al. 2019

eLIFE

elifesciences.org

Dura-Bernal et al. eLife 2019;8:e44494. DOI: https://doi.org/10.7554/eLife.44494

TOOLS AND RESOURCES a @

NetPyNE, a tool for data-driven
multiscale modeling of brain circuits

Salvador Dura-Bernal’*, Benjamin A Suter?’, Padraig Gleeson?,

Matteo Cantarelli®, Adrian Quintana®, Facundo Rodriguez'*, David J Kedziora®,
George L Chadderdon'*, Cliff C Kerr®, Samuel A Neymotin'?,

Robert A McDougal®*®, Michael Hines?, Gordon MG Shepherd?,

William W Lytton™'°

Abstract Biophysical modeling of neuronal networks helps to integrate and interpret rapidly
growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.
org) provides both programmatic and graphical interfaces to develop data-driven multiscale
network models in NEURON. NetPyNE clearly separates model parameters from implementation
code. Users provide specifications at a high level via a standardized declarative language, for
example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables
users to generate the NEURON network, run efficiently parallelized simulations, optimize and
explore network parameters through automated batch runs, and use built-in functions for
visualization and analysis — connectivity matrices, voltage traces, spike raster plots, local field
potentials, and information theoretic measures. NetPyNE also facilitates model sharing by
exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being
used to teach computational neuroscience students and by modelers to investigate brain regions
and phenomena.
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 NetPyNE = Networks using Python and NEURON

« Simplify the work with large-scale neural networks, in particular

— (1) flexible, rule-based, high-level standardized specifications covering scales from molecule to cell
to network;

— (2) efficient parallel simulation both on stand-alone computers and in high-performance computing
(HPC) clusters;

— (8) automated data analysis and visualization (e.g. connectivity, neural activity, information
theoretic analysis);

— (4) standardized input/output formats, importing of existing NEURON cell models, and conversion
to/from NeuroML (Gleeson et al., 2010; Cannon et al., 2014);

— (5) automated parameter tuning across multiples scales (molecular to network) using grid search
and evolutionary algorithms.

All tool features are available programmatically or via an integrated graphical user interface (GUI).
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NetPyNE - Schema
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NEURON
cell models

NeuroML cell
and network
models

/

§ NetPyNE/

Batch simulation module (parameter optimization, MPI/HPC job submission, etc)

!

|

-

High level specifications

Network Parameters

« Cell properties
+» Connectivity rules
» * Stimulation rules

Simulation config

* Duration
+ Saving options

~

Network instantiation

N\

Parallel Simulation

N, A

Xy &

Distribute

simulation
output

!

Representation of all Distribution and
cells and connections gathering across
MPI nodes
¥

A\ 4

Simulation results

Spikes, voltage traces, ...

!

Analysis and Visualization

Analysis and saving

T : Save to pickle, json, Export to NeuroML
Connectivity matrix, raster plot,
spiking statistics, LFP spectrogram, e s and SONATA formaits
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NeuroML,
SONATA




neuroConstruct (Gleeson et al., 2007)
PyNN (Davison, 2008)

Topographica (Bednar, 2009)
ARACHNE (Aleksin et al., 2017)
BioNet (Gratiy et al., 2018)
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Network level

gld 100 x: 100
hObj: NEURON
tags Section
< |
o Easy to access properties at all scales:
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Cellular level Biophysics level

gnabar: 0.12
gkbar: 0.036

pop: 'L4’
cellType: 'PYR’

net.cells[0].secs.soma.mechs.hh.gnabar

conns \

=Ny =

stims[0] type: 'IClamp’
amp: 0.3

Includes NEURON objects

hObj: NEURON ) i _
IClamp required for simulation
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Less IS More

Table 1. Number of lines of code in the original models and the NetPyNE reimplementations.

Model description (reference) Original language Original num lines NetPyNE num lines
Dentate gyrus (Tejada et al., 2014) NEURON/hoc 1029 261
CA1 microcircuits (Cutsuridis et al., 2010) NEURON/hoc 642 306
Epilepsy in thalamocortex (Knox et al., 2018) NEURON/hoc 556 201
EEG and MEG in cortex’HNN model (Jones et al., 2009) NEURONY/Python 2288 924
Motor cortex with RL (Dura-Bernal et al., 2017) NEURON/Python 1171 362
Cortical microcircuits (Potjans and Diesmann, 2014) PyNEST 689 198
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LFP Recordings
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Figure 6. LFP recording and analysis. (A) LFP signals (left) from 10 extracellular recording electrodes located around a morphologically detailed cell
(right) producing a single action potential (top-right). (B) LFP signals, PSDs and spectrograms (left and center) from four extracellular recording
electrodes located at different depths of a network of 120 five-compartment neurons (right) producing oscillatory activity (top-left).

DOI: https://doi.org/10.7554/eLife.44494.008
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Take Home Messages from Dura-Bernal et al. 2019

 NetPyNE is a high-level Python interface to the NEURON simulator that
facilitates the definition, parallel simulation, optimization and analysis of
data-driven brain circuit models.

« It provides multi-scale specifications using a declarative language; from
molecular level chemo-physiology to network scale

» Integrated parameter optimization

« It can lead to more compact model specifications increasing clarity and
reducing likeliness of bugs
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sSummary 3

« For biophysically detailed models of neurons and networks, the NEURON
simulation environment is the defacto standard

« Thousands of scientific studies have used NEURON, including the largest
and most detailed brain tissue models to-date

« Furthermore, NEURON is used as a building block for multi-scale, multi-
physics simulations

« Lastly, there is a rich eco-system of software facilitating the use of NEURON

« For other scales and scopes (e.g. stochastic reaction-diffusion, spiking neural
networks), other simulators are to be considered as they have optimizations
relevant at those scales

=Pi-L
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Lecture Summary

Scientific computing describes the opportunity and need to solve large and
complex problems using programmable electronic computers and
mathematical analysis

Methods and algorithms for the simulation of neurons and networks (of
diverse levels of detail) are the ingredients for scientific computing in
neuroscience

Several simulation packages have emerged over the last 40 years that are
the de facto standard for simulation (NEURON for biophysically detailed
simulations, NEST for large scale spiking neural networks, BRIAN for smaller
spiking neural networks)

These packages are under constant development to keep up with the
development of computers and to advance the type of scientific studies that
can be done

=Pi-L
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